PHYSICS

Course Contents

Physical World and Measurement
Physics - scope and excitement; nature of physical laws; Physics, technology and society.
Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.
Dimensions of physical quantities, dimensional analysis and its applications.

Kinematics
Frame of reference, Motion in a straight line: Position-time graph, speed and velocity.
Elementary concepts of differentiation and integration for describing motion.Uniform and nonuniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity time and position-time graphs.
Relations for uniformly accelerated motion (graphical treatment).
Scalar and vector quantities; Position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors.Relative velocity.Unit vector; Resolution of a vector in a plane - rectangular components.Scalar and Vector product of vectors.
Motion in a plane.Cases of uniform velocity and uniform acceleration-projectile motion.Uniform circular motion.

Laws of Motion
Intuitive concept of force. Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion.
Law of conservation of linear momentum and its applications
Equilibrium of concurrent forces. Static and kinetic friction, laws of friction, rolling friction, lubrication.
Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on banked road).

Work, Energy and Power
Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power.
Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.

Motion of System of Particles and Rigid Body
Keplar's laws of planetary motion.The universal law of gravitation.
Acceleration due to gravity and its variation with altitude and depth.
Gravitational potential energy and gravitational potential. Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites.

Properties of Bulk Matter
Elastic behaviour, Stress-strain relationship, Hooke's law, Young's modulus, bulk modulus, shear modulus of rigidity, Poisson's ratio; elastic energy.
Pressure due to a fluid column; Pascal's law and its applications (hydraulic lift and hydraulic brakes).Effect of gravity on fluid pressure.
Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity.Bernoulli's theorem and its applications.
Surface energy and surface tension, angle of contact, excess of pressure across a curved surface,application of surface tension ideas to drops, bubbles and capillary rise.
Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv - calorimetry; change of state - latent heat capacity
Heat transfer-conduction, convection and radiation, thermal conductivity, Qualitative ideas of Blackbody radiation, Wein's displacement Law, Stefan's law, Green house effect..

Thermodynamics
Thermal equilibrium and definition of temperature (zeroth law of thermodynamics).Heat, work and internal energy. First law of thermodynamics. Isothermal and adiabatic processes.
Second law of thermodynamics: reversible and irreversible processes. Heat engine and refrigerator.

Behaviour of Perfect Gases and Kinetic Theory of Gases
Equation of state of a perfect gas, work done in compressing a gas.
Kinetic theory of gases - assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equi-partition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro's number.

Oscillations and Waves
Periodic motion - time period, frequency, displacement as a function of time. Periodic functions.
Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a spring-restoring force and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation of expression for its time period.
Free, forced and damped oscillations (qualitative ideas only), resonance
.

s -Block Elements (Alkali and Alkaline Earth Metals)
Group 1 and Group 2 Elements
General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens,uses.
Preparation and Properties of Some Important Compounds:,
Sodium Carbonate, Sodium Chloride, Sodium Hydroxide and Sodium Hydrogencarbonate, Biological importance of Sodium and Potassium.
Calcium Oxide and Calcium Carbonate and their industrial uses, biological importance of Magnesium and Calcium.
Wave motion. Transverse and longitudinal waves, speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect.

PRACTICALS

Course Contents

Free Web Hosting